## COMPOSITE CONSTITUENTS: FOUR NEW TRITERPENOIDS, NEOLUPENOL, TAROLUPENOL AND THEIR ACETATES ISOLATED FROM ROOTS OF A JAPANESE DANDELION, <u>TARAXACUM JAPONICUM</u>

H. Ageta\*, K. Shiojima, K. Masuda and T. Lin Showa College of Pharmaceutical Sciences, 5-1-8 Tsurumaki, Setagaya-ku, Tokyo, JAPAN 154

<u>Abstract</u> Neolupenyl acetate (<u>Ia</u>), tarolupenyl acetate (<u>IIa</u>) and their corresponding alcohols (<u>Ib</u> and <u>IIb</u>) were isolated from the roots of *Taraxacum japonicum*, and their structures were established as the members of migrated lupane series.

A Japanese crude drug "Hokoei-kon", the dried roots of *Taraxacum japonicum* KOIDZ. (Kansaitampopo, Compositae),<sup>1)</sup> is very rich in triterpenoid like those of *T. officinale* WEBER.<sup>2)</sup> Hexane extraction of the crude drugs followed by silica-gel chromatography afforded fatty acid esters (0.14% of the drugs), acetates (0.62%) and mono-ols (0.19%) of triterpenoids. The acetates consisted of taraxasteryl acetate (29.8% of the acetates),  $\alpha$ -amyrin acetate (16.0%),  $\beta$ -amyrin acetate (18.3%), lupenyl acetate (4.2%), taraxeryl acetate (3.7%) and two new compounds, named neolupenyl acetate (7.7%) and tarolupenyl acetate (13.3%). This communication concerns the characterization of the latter two compounds.

Neolupenyl acetate (Ia), m.p. 195.5-197°,  $[\alpha]_D$  +71.4°(CHCl3), IR cm<sup>-1</sup> 1742,1250,1022; 826, 816, was hydrolysed to give neolupenol (<u>Ib</u>), m.p. 208-209°,  $[\alpha]_D$  +115.5°, IR cm<sup>-1</sup> 3480,1042,1028; 826,808, which was also found in the mono-ols fraction. Cr03 oxidation of <u>Ib</u> afforded neolupenone (<u>Ic</u>), <sup>3)</sup> m.p. 163-164°, IR cm<sup>-1</sup> 1708; 826,816, which gave neolupene (<u>Id</u>), m.p. 129-130°, IR cm<sup>-1</sup> 823,812, on Wolff-Kishner reduction. MS spectrum of <u>Ia</u>, m/z M<sup>+</sup> 468.3956 (C<sub>32</sub>H<sub>52</sub>O<sub>2</sub>; 11% of base peak), 408 (M<sup>+</sup>-60; 12), 365 (M<sup>+</sup>-60-C<sub>3</sub>H<sub>7</sub>; 8), 284(4), 218(99), 203(88) and 189(100), as well as those of <u>Ic</u> and <u>Id</u>, clearly showed the compound to be a pentacyclic triterpenoid having  $\Delta^{12}$ -double bond and an isopropyl group. 100MHz <sup>1</sup>H-NMR spectra of <u>Ia-Id</u> (TABLE) suggested the compounds have 3β-acetoxyl in <u>Ia</u>, 3β-hydroxyl in <u>Ib</u> and 3-oxo in <u>Ic</u> (typical splitting pattern of 3α-H in <u>Ia</u> and <u>Ib</u>, and the chemical shifts of C(23)-C(26) methyl protons in <u>Ia-Ic</u> in comparison with those in <u>Id</u>),  $\Delta^{12}$ double bond (triplet like dd signal of olefinec proton and the shifts of C(25)-C(28) methyl signals in <u>Ia-Id</u>), and 18βH, 19αH structure of the migrated lupane skeleton (one of the signals of isopropyl methyls remarkably shifted to high field in <u>Ia-Id</u>). Final proof of the structure of <u>Ia</u>



TABLE. Chemical Shifts ( $\delta$ ) for CDCl<sub>3</sub> solution (JEOL JNM-FX-100)<sup>a</sup>)

|                     | C( ) methyl protons |       |       |       |       |       |                | olefinic              | 3a-                   |
|---------------------|---------------------|-------|-------|-------|-------|-------|----------------|-----------------------|-----------------------|
|                     | 23                  | 24    | 25    | 26    | 27    | 28    | 29, 30b)       | proton                | proton <sup>C</sup> ) |
| Ia                  | 0.875               | 0.875 | 0.975 | 0.953 | 1.110 | 0.928 | 0.768d, 0.875d | 5.159dd <sup>d)</sup> | 4.509dd               |
| Ib                  | 1.000               | 0.796 | 0.951 | 0.951 | 1.105 | 0.928 | 0.765d, 0.865d | 5.162dd               | 3.224dd               |
| Ic                  | 1.098               | 1.056 | 1.076 | 1.000 | 1.110 | 0.928 | 0.768d, 0.870d | 5.184dd               |                       |
| Id                  | 0.870               | 0.823 | 0.948 | 0.948 | 1.115 | 0.928 | 0.764d, 0.868d | 5.162dd               |                       |
| <u>IIa</u>          | 0.850               | 0.850 | 0.870 | 1.046 | 0.975 | 0.821 | 0.986d, 1.008d | 5.325ddde)            | 4.484dd               |
| IIb                 | 0.982               | 0.774 | 0.850 | 1.049 | 0.982 | 0.826 | 0.991d, 1.016d | 5.333ddd              |                       |
| <u>11d</u>          | 0.848               | 0.803 | 0.848 | 1.049 | 0.990 | 0.823 | 0.989d, 1.016d | 5.324ddd              |                       |
| <u>IIIa</u><br>IIId | 0.867<br>0.867      | 0.848 | 0.887 | 0.916 | 1.084 | 0.970 | 0.882d, 0.919d |                       | 4.504dd               |

a) Assignments were confirmed by  $CDCl_3-C_6D_6$  solvents shifts and Lanthanide shifts. Coupling constants observed were: b) 6.6-6.9 Hz, c) 9.2-10.3 and 5.4-6.8 Hz, d) 3.4-3.7 Hz, and e) 3.0, 2.8 and 1.4 Hz.

was given by identifying neolup-13(18)-en-3β-yl acetate (<u>IIIa</u>), m.p. 184-185°, derived from <u>Ia</u> by treatment with 2N-H<sub>2</sub>SO<sub>4</sub>-benzene AcOH at 50°, with the corresponding specimen derived from lupenyl acetate by known process.<sup>4)</sup> Biogenetic consideration of the formation of <u>Ia</u> and <u>Ib</u> from prelupenyl cation (<u>IV</u>) by concerted 1,2-shifts of hydrogen (19 $\beta$ H  $\rightarrow$  20, 18 $\alpha$ H  $\rightarrow$  19 $\alpha$ , 13 $\beta$ H  $\rightarrow$  18 $\beta$ ) also supports the stereochemistry of <u>Ia</u> and <u>Ib</u>.

Tarolupenyl acetate (<u>IIa</u>), m.p. 221-223°,  $[\alpha]_D$  +70.6°(CHCl3), IR cm<sup>-1</sup> 1744, 1241, 1021; 808, gave tarolupenol (<u>IIb</u>), m.p. 207-208°,  $[\alpha]_D$  +135.7°, IR cm<sup>-1</sup> 3280,1039; 808 on hydrolysis. The latter was also found in the mono-ols fraction in a small amount. CrO3 oxidation of <u>IIb</u> followed by Wolff-Kishner reduction afforded tarolupene (<u>IId</u>), m.p. 163.5-164.5°,  $[\alpha]_D$  +64.5°, IR cm<sup>-1</sup> 3080,1616; 808. MS spectrum of <u>IIa</u>, m/z M<sup>+</sup> 468.3960 (C<sub>32</sub>H<sub>52</sub>O<sub>2</sub>; 2), 408 (M<sup>+</sup>-60; 52), 393 (M<sup>+</sup>-60-CH<sub>3</sub>; 35), 365 (M<sup>+</sup>-60-C<sub>3</sub>H<sub>7</sub>; 68), 325(11), 229(30), 204(56), 189(100), as well as that of <u>IId</u>, suggested the compound to be a pentacyclic triterpenoid having  $\Delta$ <sup>14</sup>-double bond and an isopropyl group. <sup>1</sup>H-NMR spectra of <u>IIa</u>, <u>IIb</u> and <u>IId</u> (TABLE) showed the compounds have 3β-oxygen function in <u>IIa</u> and <u>IIb</u>, and  $\Delta$ <sup>14</sup>-double bond (one trisubstituted olefinic proton signal and the chemical shifts of C(25)-C(28) methyl signals). Treatment of <u>IIa</u> with 2N-H<sub>2</sub>SO<sub>4</sub> in benzene-AcOH at 20° gave a mixture (1:1) of <u>Ia</u> and <u>IIIa</u>. The facts mentioned above established the structures of tarolupenyl acetate and its derivatives to be formulated as <u>IIa</u>, <u>IIb</u> and <u>IId</u>.

Ia, Ib and IIa, IIb are two groups of the migrated lupane triterpenoids first isolated from natural source. Considering recent studies on cymbopogone,<sup>5)</sup> all the groups of migrated lupane series could be expected to be isolated like those of hopane and oleanane series.

## References and Notes

- 1) "Hokoei-kon" used in this investigation was purchased at Tokyo market supposed to be a native of Chugoku area. Ia and IIa were also isolated from the fresh roots of *Taraxacum japonicum* KOIDS., *T. platycarpum* DAHLST., *T. longeappendiculatum* NAKAI and *T. hondoense* NAKAI, but little from *T. albidum* DAHLST. and *T. officinale* WEBER (natualized in Japan).
- 2) S.Burrows, J.C.E.Simpson, J.C.S., 1938, 2042; T.R.Ames, J.L.Beton, A.Bowers, T.G.Halsall, E.R.H. Jones, *ibid.*, 1954, 1905; J.M.Beaton, F.S.Spring, R.Stevenson, J.L.Stewart, *ibid.*, 1955, 2131.
- 3) Recently 18β,19αH-lup-12-en-3-one was synthesized from friedelin (Y.Yokoyama, Y.Moriyama, T. Tsuyuki, T.Takahashi, Chemistry Lett.,1980,67; Bull.Chem.Soc.Jpn.,1981,54,234). The identity of the compound with <u>Ic</u> was confirmed by comparisons of their <sup>1</sup>H-NMR and MS spectra. Thanks are due to Prof. T.Takahashi for sending the data.
- 4) S.P.Adhikary, W.Lawrie, J.McLean, J.C.S.(C),1970,1030.
- 5) M.Crawford, S.W.Hanson, M.E.S.Koker, Tetrahedron Lett., 1975, 3090; Y.Yokoyama, T.Tsuyuki, N. Nakamura, T.Takahashi, S.W.Hanson, K.Matsushita, *ibid.*, 1980, 3701.